Multiscale Modeling of Carbon Dioxide Migration and Trapping in Fractured Reservoirs with Validation by Model Comparison and Real-Site Applications Project Number DE-FE0023323

Karl Bandilla Princeton University

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- Project Benefits, Goals and Objectives
- Project overview
- Accomplishments
- Summary

Project participants

Michael Celia

Yiheng Tao

Lawrence Berkeley National Laboratory

Heriot-Watt University

Sebastian Geiger

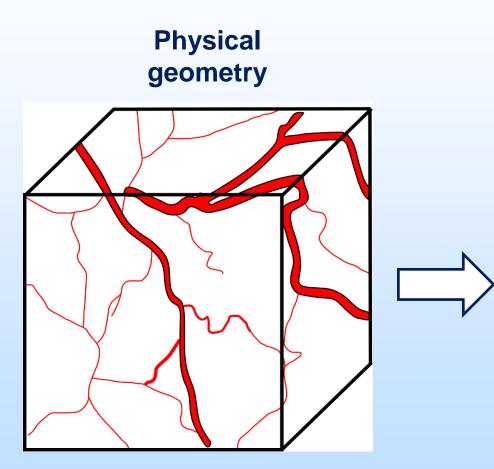
Florian Doster

Benefit to the Program

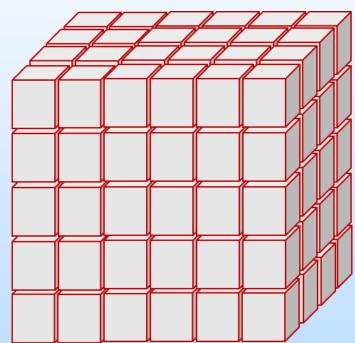
- Goal: Develop new capabilities for carbon sequestration modeling in fractured reservoirs through improvements in the representation of fracture-matrix flow interactions.
- Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.

Project Objectives

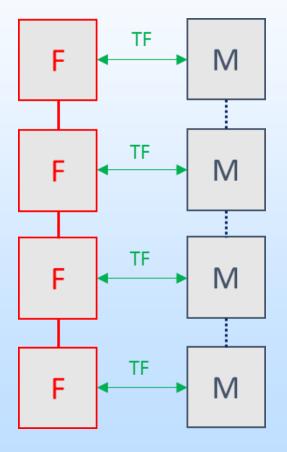
- Develop new models for interactions of fracture and matrix flow
- Incorporate those models into reservoirscale simulators
- Conduct sensitivity analyses of trapping efficiency and storage capacity using new model
- Apply new model to In Salah site



Project Overview

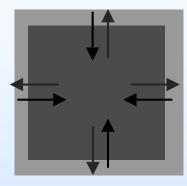

- Dual-continuum models
- Transfer functions
 - Gravity drainage
 - Spontaneous imbibition
- Sensitivity analysis
- Vertically-integrated approach

The Dual-Continuum Model

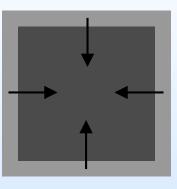


Idealization: the dual-continuum representation

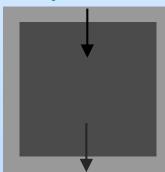
Conceptual approach

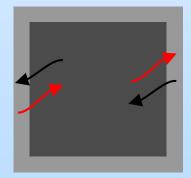


- F = Fracture grid-block
- M = Matrix grid-block
- TF = Transfer function



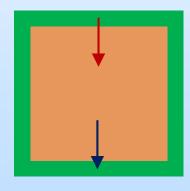
Fracture/Matrix Interaction


Spontaneous Imbibition

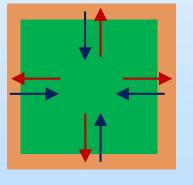

Fluid Compression

Gravity Displacement

Molecular Diffusion



CO₂ Storage Context


CO₂ Injection Phase: Drainage Process

Fracture filled with supercritical CO₂ (non-wetting phase) Rock matrix filled with brine (wetting phase)

Post Injection Phase: Imbibition Process


Fracture filled with brine (wetting phase) Rock matrix filled with supercritical CO₂ (non-wetting phase)

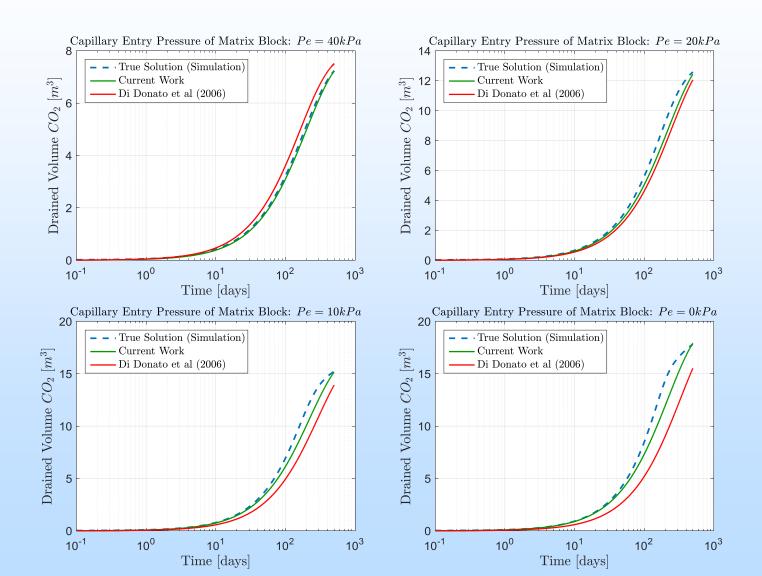
CO₂ INJECTION PHASE

CO₂ Injection Phase

Drainage Model

First-Order Model

$$V_{CO_2} = V_{CO_2}^{max}(1 - e^{-\tau_D \cdot t})$$

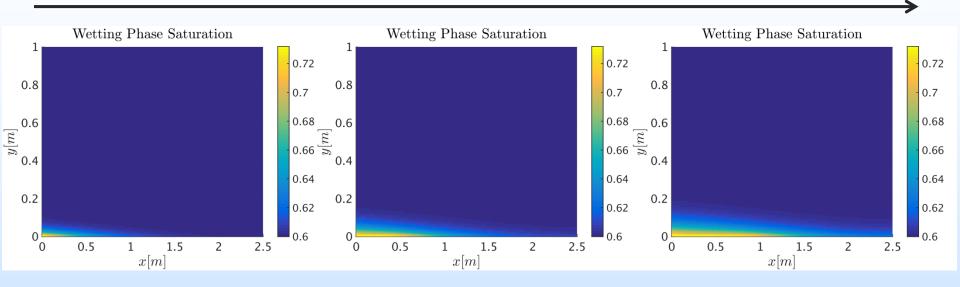

 Dimensional analysis of the 1D fractional-flow equation provides estimate for the characteristic timescales: t_{Dg}, t_{Dc}, t_{Dv}

$$\tau_D = \left(1 - \frac{1}{r}\right) \left(t_{D_g} + t_{D_v}\right) + \left(\frac{1}{r}\right) \left(t_{D_c}\right)$$

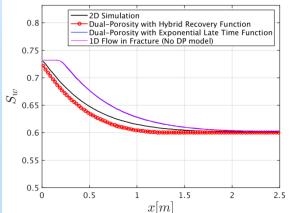
with ratio of gravitational to capillary forces:

Drainage curves comparison

22


POST INJECTION PHASE

Brine imbibition hybrid model


Time

HERIOT Server Watt

BERKELEY LAB

Wetting Phase Saturation Front in the Fracture

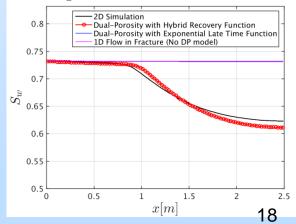
Wetting Phase Saturation Front in the Fracture

1

x[m]

1.5

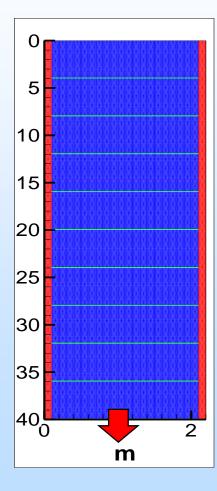
2


2.5

0.5

0

0.5

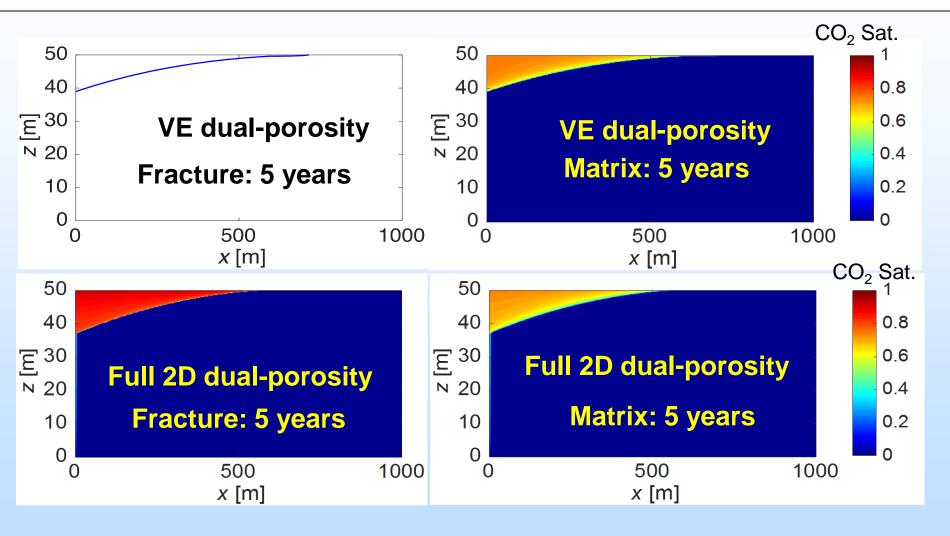

Wetting Phase Saturation Front in the Fracture

SENSITIVITY ANALYSIS

Vertical block connectivity

- 10 matrix blocks (3.9 m×2 m) and 11 fractures (1 mm)
- Fixed gas pressure + saturation from 2 side fractures
- Three matrix block connectivities:
 - Fully-separated matrix blocks (sugar cubes)
 - No horizontal fractures (match sticks)
 - Partial connectivity (mix of the two above)

VERTICALLY-INTEGRATED APPROACH



Vertically integrated model

- Vertical segregation is fast in the fractures
- Two approaches:
 - Dual-porosity with vertical equilibrium in fractures
 - Dual-permeability with vertical equilibrium in fractures and dynamic reconstruction in matrix

VI dual-porosity model

Conclusions

- Hybrid transfer functions for both initial invasion of CO₂ into matrix and later displacement by brine without tuning parameters
- Matrix block connectivity is important for storage behavior of fractured reservoirs
- CO₂ and brine migration in fractured reservoirs can be modeled using a verticallyintegrated approach

- Development of hybrid transfer function for dualporosity model for both spontaneous imbibition and gravity drainage
- Implemented and validated single- and two-phase dual-porosity modules and a hysteresis module for MRST
- Updated TOUGH2/ECO2N simulator for better performance for CO₂ storage in fractured media simulations

Accomplishments to Date

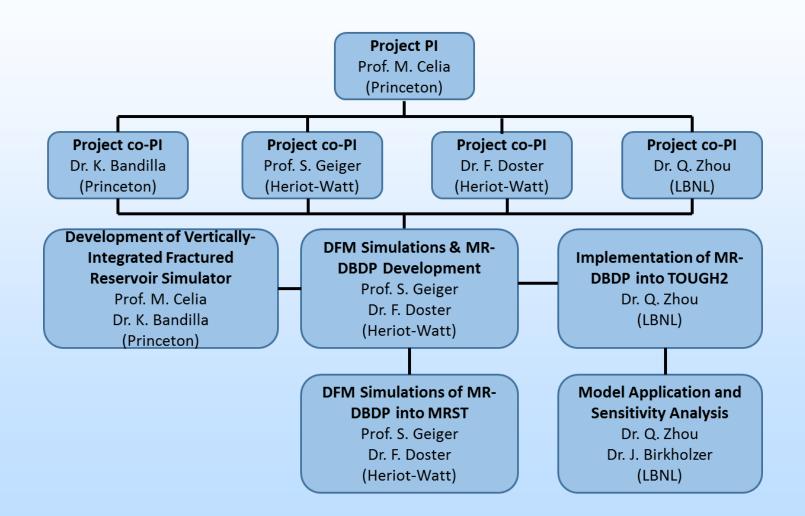
- Investigated the impact of matrix block connectivity on CO₂ storage capacity
- Developed analytic solutions for CO₂ storage due to diffusion of dissolved CO₂
- Developed and implemented a vertically-integrated dual-porosity model
- Investigated development of vertically-integrated dual-permeability model

Synergy Opportunities

 The modeling approaches developed in this project should be useful to other projects studying carbon sequestration in fractured formations

- Implement the new transfer functions into TOUGH2, MRST and vertically-integrated simulator
- Continue development of vertically-integrated dualporosity and dual-permeability models
- Continue to investigate the impact of fracture and matrix block parameters on CO₂ storage capacity
- Apply newly developed modeling approaches to In Salah site

THANK YOU!


Karl Bandilla Princeton University bandilla@princeton.edu

Organization Chart

Gantt Chart

light grey: accomplished; dark grey: planned; MS: mile stone

Fiscal Year	BP 1				BP 2						BP 3	
Quarter	1	2	3	4	1	2	3	4	5	6	3	4
Task 1: Project Management, Planning and Reporting												
Subtask 1.1: Updated Project Management Plan	MS											
Subtask 1.2: Project Planning and Reporting	MS											
Task 2.0: Detailed DFM modeling of CO2 and brine				MS								
Task 3.0: Development of MR-DBDP model with analytic transfer function						MS						
Task 4.0: Development of new simulator capabilities												
Subtask 4.1: Development of vertically integrated simulator					MS					MS		
Subtask 4.2: incorporate new MR-DBDP into MRST simulator												MS
Subtask 4.3: incorporate new MR-DBDP into TOUGH2									MS			
Task 5.0: Model demonstration and sensitivity analysis												
Subtask 5.1: Investigation of driving forces												
Subtask 5.2: Sensitivity Analysis								MS				
Subtask 5.3: Storage and trapping in heterogeneous reservoir										MS		[
Subtask 5.4: Investigation of injection scenarios												[
Task 6.0: Simulator application to In Salah												
Subtask 6.1: Site-specific model development										MS		
Subtask 6.2: Migration and Trapping modeling										MS		h
Subtask 6.3: Sensitivity analysis												MS

- Bandilla, K.W. (2015). Multiscale Modeling of Carbon Dioxide (CO₂) Migration and Trapping in Fractured Reservoirs with Validation by Model Comparison and Real-Site Applications. Presented at the Carbon Storage R&D Project Review Meeting in Pittsburgh, Pa (8/18-8/20/15).
- Doster, F. (2015). Multi-scale multi-physics modelling of multi-phase flow phenomena in porous media. Presented at the Non-linearities and Upscaling in Porous Media (NUPUS) Conference in Freudenstadt, Germany (9/8 – 9/12/2015).

- March, R. (2015). Analytical Solutions and Numerical Models for Early- and Late-time Imbibition in Fractured Reservoirs. Presented at the Foundation CMG Summit in Calgary, Canada (9/15 - 9/16/2015).
- March, R. (2015). Analytical Solutions and Numerical Models for Early- and Late-time Imbibition in Fractured Reservoirs. Presented at the Challenges and Advancement in Reactive Flow and Carbonate Reservoir Simulation workshop at Heriot-Watt University.

- March, R. (2015). Imbibition in multiple continuum representations of fractured porous media: Early and late time behavior. Presented at the 2015 American Geophysical Union Fall Meeting in San Francisco, CA (12/14-12/18/2015).
- Zhou, Q. (2015). A Hybrid Continuum-Discrete Scheme for Simulating CO₂ Migration and Trapping in Fractured Sandstone Reservoirs. Presented at the 2015 American Geophysical Union Fall Meeting in San Francisco, CA (12/14-12/18/2015).

- Doster, F. (2015). Full Pressure Coupling for Geomechanical Multi-phase Multi-component Flow Simulations. Presented at the Scottish Carbon Capture and Storage conference in Edinburgh, Scotland (10/28/2015).
- March, R. (2015). Modelling CO₂-Storage in Fractured Porous Media: Early and Late Time Behaviour during Imbibition in Dual-Continua Representations. Presented at the Scottish Carbon Capture and Storage conference in Edinburgh, Scotland (10/28/2015).

- March, R. (2016). Geological Storage of CO₂, Fractured Reservoirs and much more.... Presented at Penn State University in State College, PA (4/20/2016).
- March, R. (2016). Group Meeting Princeton. Presented at Princeton University in Princeton, NJ (5/6/2016).
- March, R. (2016). Modelling and Simulation of Geological Storage of CO₂ in fractured formations. Presented at the Institute of Petroleum Engineering Workshop in Edinburgh, UK (6/28/2016).

- March, R., F. Doster, and S. Geiger (2016). Accurate early and late time modelling of counter-current spontaneous imbibition, *Water Resources Research*, accepted 14 July 2016, DOI: 10.1002/2015WR018456.
- March, R., F. Doster, and S. Geiger (2016). Assessment of Fractured Reservoirs as Potential Candidates for CO₂ Storage. In preparation.
- March, R., F. Doster, and S. Geiger (2016). Modelling of Buoyancy-Driven Transfer duration CO₂ Storage in Fractured Formations. In preparation.